Bondarko's work on local Galois modules Part III: Formal Group Laws

Kevin Keating Department of Mathematics University of Florida

May 23, 2018

Formal Group Laws

Let K be a local field with perfect residue field \overline{K} . Let \mathcal{O}_K be the ring of integers of K.

Definition

A formal group law over $\mathcal{O}_{\mathcal{K}}$ is a series $F(X, Y) \in \mathcal{O}_{\mathcal{K}}[[X, Y]]$ such that

$$F(X, Y) = X + Y + \text{higher degree terms}$$

$$F(X, Y) = F(Y, X)$$

$$F(X, 0) = X$$

$$F(F(X, Y), Z) = F(X, F(Y, Z)).$$

It follows that there is a unique series $[-1]_{\mathcal{F}}(X)\in \mathcal{O}_{\mathcal{K}}[[X]]$ such that

$$F(X, [-1]_F(X)) = F([-1]_F(X), X) = 0.$$

Examples of Formal Group Laws

The additive formal group law:

$$\mathbb{G}_{a}(X, Y) = X + Y$$
$$[-1]_{\mathbb{G}_{a}}(X) = -X$$

The multiplicative formal group law:

$$\mathbb{G}_m(X, Y) = X + Y + XY$$

= $(1 + X)(1 + Y) - 1$
 $[-1]_{\mathbb{G}_m}(X) = (1 + X)^{-1} - 1$
= $-X + X^2 - X^3 + \cdots$

Formal group laws also arise naturally from elliptic curves, and in local class field theory (Lubin-Tate formal groups).

A Family of Examples of Formal Group Laws

Let $c \in \mathcal{O}_K$, and define

$$F_c(X, Y) = X + Y + cXY.$$

The first three conditions for a formal group law are clearly satisfied by F_c . In addition, we have

$$F_{c}(F_{c}(X,Y),Z) = (X + Y + cXY) + Z + c(X + Y + cXY)Z$$

= X + Y + Z + c(X + Y + Z) + c²XYZ
= X + (Y + Z + cYZ) + cX(Y + Z + cYZ)
= F_{c}(X,F_{c}(Y,Z)).

A Family of Examples of Formal Group Laws

Let $c \in \mathcal{O}_K$, and define

$$F_c(X, Y) = X + Y + cXY.$$

The first three conditions for a formal group law are clearly satisfied by F_c . In addition, we have

$$F_c(F_c(X, Y), Z) = (X + Y + cXY) + Z + c(X + Y + cXY)Z$$

= X + Y + Z + c(X + Y + Z) + c²XYZ
= X + (Y + Z + cYZ) + cX(Y + Z + cYZ)
= F_c(X, F_c(Y, Z)).

In fact if $c \neq 0$ then $F_c(X, Y) = c^{-1}\mathbb{G}_m(cX, cY)$.

The Height of a Formal Group Law

We define $[n]_F(X)$ recursively for $n \ge 1$ by $[1]_F(X) = X$ and $[n+1]_F(X) = F(X, [n]_F(X))$.

Let $\overline{F}(X, Y)$ denote the image of F(X, Y) in $\overline{K}[[X, Y]]$. Then $\overline{F}(X, Y)$ is a formal group law over \overline{K} .

It is known that if $[p]_{\overline{F}}(X) \in \mathcal{O}_{\mathcal{K}}[[X]]$ is nonzero then it has the form $[p]_{\overline{F}}(X) = \eta(X^{p^h})$ for some $h \ge 1$ and some

$$\eta(X) = c_1 X + c_2 X^2 + \cdots \in \overline{K}[[X]]$$

such that $c_1 \neq 0$.

Definition

If $[p]_{\overline{F}}(X) = \eta(X^{p^h})$ with $\eta'(0) \neq 0$ we say that F(X, Y) has height *h*. If $[p]_{\overline{F}}(X) = 0$ we say F(X, Y) has infinite height.

Examples of Heights

Since
$$[p]_{\overline{\mathbb{G}}_a}(X) = pX = 0$$
, \mathbb{G}_a has infinite height.
Since $[p]_{\overline{\mathbb{G}}_m}(X) = (1+X)^p - 1 = X^p$, \mathbb{G}_m has height 1.
If $c \in \mathcal{M}_K$ then $\overline{F}_c(X, Y) = \overline{\mathbb{G}}_a(X, Y)$, so $F_c(X, Y)$ has infinite height.

If $c \in \mathcal{O}_{K}^{\times}$ then $F_{c}(X, Y)$ has height 1.

Formal group laws associated to elliptic curves have height 1 or 2.

A Lubin-Tate formal group law associated to K has height $v_{\mathcal{K}}(p)$.

The Depth of a Formal Group Law

Definition

Let F(X, Y) be a formal group law over \mathcal{O}_K and write

$$F(X,Y) = X + Y + \sum_{i,j\geq 1} a_{ij} X^i Y^j.$$

The depth of F(X, Y) is

$$d(F) = \inf \left\{ \frac{v_{K}(a_{ij})}{i+j-1} : i, j \ge 1 \right\}.$$

We clearly have $d(F) \ge 0$. Furthermore, if F(X, Y) has finite height then d(F) = 0.

Let F(X, Y) be a formal group law over \mathcal{O}_{K} and let $c \in \mathcal{O}_{K} \setminus \{0\}$. Then $\tilde{F}(X, Y) := c^{-1}F(cX, cY)$ is a formal group law over \mathcal{O}_{K} , and $d(\tilde{F}) = d(F) + v_{K}(c)$.

Groups from Formal Group Laws

Let r be an integer such that r > -d(F). For $\alpha, \beta \in \mathcal{M}_{K}^{r}$ set

$$\alpha +_{\mathsf{F}} \beta = \mathsf{F}(\alpha, \beta).$$

Since d(F) + r > 0, the series $F(\alpha, \beta)$ converges in K.

 \mathcal{M}_{K}^{r} with the operation $+_{F}$ is an abelian group. The identity element is 0, and the inverse of $\alpha \in \mathcal{M}_{K}^{r}$ is $[-1]_{F}(\alpha)$.

We denote the group $(\mathcal{M}_{K}^{r}, +_{F})$ by $F(\mathcal{M}_{K}^{r})$.

We can define subtraction in the abelian group $F(\mathcal{M}_{\mathcal{K}}^r)$ by

$$\alpha -_F \beta = F(\alpha, [-1]_F(\beta)).$$

Kummer Extensions from Formal Group Laws

Let F(X, Y) be a formal group law over \mathcal{O}_K . Set r = 1 if d(F) = 0and r = 0 if d(F) > 0. Let T be a finite subgroup of $F(\mathcal{M}_K^r)$, and set

$$\mathcal{P}_{\mathcal{T}}(X) = \prod_{t\in\mathcal{T}} (X -_{\mathcal{F}} t) \in \mathcal{O}_{\mathcal{K}}[[X]].$$

Let q = |T|; then q is a power of p.

Proposition

Let $a \in K$ with $v_K(a) = m$ and $p \nmid m$. Assume that m/q > -d(F)and $m/q < v_K(t)$ for all $t \in T$. Then there is $y \in K^{sep}$ such that $P_T(y) = a$. If we choose y to have maximum valuation then K(y)/Kis a totally ramified Galois extension with $Gal(K(y)/K) \cong T$.

We say that K(y) is a Kummer extension of K with respect to the formal group law F(X, Y).

Kummer Extensions from Formal Group Laws ...

We sketch the proof of the proposition under the assumption $v_{\kappa}(a) > 0$.

The Weierstrass degree of $P_T(X) - a$ is q. By the Weierstrass preparation theorem we get $P_T(X) - a = u(X)f(X)$ with $u(X) \in \mathcal{O}_K[[X]]^{\times}$ and $f(X) \in \mathcal{O}_K[X]$ a distinguished polynomial of degree q.

For $t \in T$ we have $P_T(X+_F t) = P_T(X)$, and hence $P_T(y+_F t) = a$.

It follows that the set of roots of f(X) is $\{y +_F t : t \in T\}$. Thus K(y) is the splitting field of f(X) over K, so K(y)/K is Galois.

Kummer Extensions from Formal Group Laws ...

Since $m/q < v_{\mathcal{K}}(t)$ we get

$$v_{\mathcal{K}(y)}(y+_F t)=v_{\mathcal{K}(y)}(y)=m/q.$$

Hence f(X) is irreducible over K.

It follows that there is an isomorphism θ : Gal $(K(y)/K) \to T$ defined by

$$\theta(\sigma) = \sigma(y) -_F y.$$

For $\sigma \in \operatorname{Gal}(L/K)$ set $t_{\sigma} = \theta(\sigma)$.

Diagonals and Semistable Extensions

Let L/K be a totally ramified Galois extension. Recall that for $\beta \in L \otimes_{\kappa} L$ with $\beta \neq 0$ we defined

$$d(\beta) = \min\{i+j : [i,j] \in D(\beta)\}.$$

We also defined the diagonal of β to be

$$N(\beta) = \{[i,j] \in D(\beta) : i+j = d(\beta)\}.$$

Finally, we defined L/K to be semistable if there exists $\beta \in L \otimes_{\kappa} L$ such that $\phi(\beta) \in K[G]$, $p \nmid d(\beta)$, and $|N(\beta)| = 2$.

Semistable Extensions and Formal Group Laws

Theorem

Let L/K be a totally ramified Galois extension. The following are equivalent:

- L/K is a Kummer extension with respect to some formal group law over \mathcal{O}_K .
- **2** L/K is a semistable abelian p-extension.

We'll outline the proof of $1 \Rightarrow 2$. We already saw that L/K is an abelian *p*-extension.

Kummer Extensions are Semistable

We have $a \in K$, $T \leq F(\mathcal{M}_{K}^{r})$,

$$P_{\mathcal{T}}(X) = \prod_{t \in \mathcal{T}} (X -_{\mathcal{F}} t),$$

and $y \in \mathcal{O}_L$ such that $P_T(y) = a$ and L = K(y). Write

$$X -_F Y = F(X, [-1]_F(Y)) = X - Y + \sum_{i,j \ge 1} b_{ij} X^i Y^j$$

and set $\beta = (1 \otimes y) -_F (y \otimes 1)$. Then $\beta \in L \otimes_K L$ and

$$\beta = 1 \otimes y - y \otimes 1 + \sum_{i,j \ge 1} b_{ij} y^j \otimes y^i$$

 $= 1 \otimes y - y \otimes 1 +$ terms with higher valuations.

Set $m = v_L(y)$. Then $d(\beta) = m$ and $N(\beta) = \{[0, m], [m, 0]\}$.

Kummer Extensions are Semistable ...

Let $\sigma \in G = \text{Gal}(L/K)$. Recall that the map $\psi_{\sigma} : L \otimes_{K} L \to L$ defined by $\psi_{\sigma}(a \otimes b) = a\sigma(b)$ is a *K*-algebra homomorphism. Therefore

$$egin{aligned} \psi_\sigma(eta) &= \psi_\sigma(1\otimes y - _F y\otimes 1) \ &= \psi_\sigma(1\otimes y) - _F \psi_\sigma(y\otimes 1) \ &= \sigma(y) - _F y \ &= t_\sigma \in K. \end{aligned}$$

It follows that
$$\phi(\beta) = \sum_{\sigma \in G} \psi_{\sigma}(\beta) \sigma \in K[G].$$

Since we also have $|N(\beta)| = 2$ and $p \nmid m = d(\beta)$ we conclude that L/K is semistable.

When is $\mathcal{O}_{\mathcal{K}}$ Free over $\mathfrak{A}(\mathcal{O}_{\mathcal{K}})$?

Theorem

Let L/K be a totally ramified abelian extension of degree $q = p^r$. Assume that the different \mathfrak{D} of L/K satisfies $\mathfrak{D} = \delta \mathcal{O}_L$ for some $\delta \in \mathcal{O}_K$ such that $\delta \notin q \mathcal{O}_K$. Then the following are equivalent:

• There is a formal group law F(X, Y) over \mathcal{O}_K , a finite subgroup T of $F(\mathcal{M}_K)$, and a uniformizer π_K of K such that L = K(y) for some y such that $P_T(y) = \pi_K$.

2
$$\mathcal{O}_L$$
 is a free $\mathfrak{A}(\mathcal{O}_L)$ -module of rank 1.

Furthermore, when these conditions are satisfied, $\mathfrak{A}(\mathcal{O}_{K})$ is a Hopf order in K[G].

We will sketch the proof of $2 \Rightarrow 1$.

\mathcal{O}_L free over $\mathfrak{A}(\mathcal{O}_L) \Rightarrow L/K$ Kummer

The assumptions on \mathfrak{D} and δ imply that there is $\xi \in \mathfrak{A}(\mathcal{O}_L)$ such that for all $a \in L$ with $v_L(a) = q - 1$ we have $v_L(\xi(a)) = 1$.

Let $\alpha \in L \otimes_{\kappa} L$ satisfy $\phi(\alpha) = \delta \xi$ and write

$$\phi(\alpha) = \sum_{\sigma \in G} t_{\sigma} \sigma.$$

Then $t_{\sigma} \in \mathcal{M}_{\mathcal{K}}$ for all $\sigma \in G$. By adding a multiple of $1 \otimes 1$ to α we can assume that $t_1 = 0$.

We want to construct a formal group law F(X, Y) such that $T = \{t_{\sigma} : \sigma \in G\}$ is a subgroup of $F(\mathcal{M}_{\mathcal{K}})$.

We need $F(t_{\sigma}, t_{\tau}) = t_{\sigma\tau}$ for all $\sigma, \tau \in G$. Bondarko shows that it is enough to check this for q particular pairs $(\sigma, \tau) \in G$.

By specializing parameters in a universal formal group law we can construct F(X, Y) to make these q relations hold.

 \mathcal{O}_L free over $\mathfrak{A}(\mathcal{O}_L) \Rightarrow L/K$ Kummer ...

Since

$$\xi \in \mathfrak{A}(\mathcal{O}_L) = \phi(\mathfrak{D}^{-1} \otimes_{\mathcal{O}_K} \mathcal{O}_L)$$

we have

$$\alpha = \delta \phi^{-1}(\xi) \in \mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_L.$$

In fact there are $y, z \in \mathcal{M}_L$ such that $\alpha = 1 \otimes y +_F z \otimes 1$. We get

$$0 = \psi_1(\alpha) = \psi_1(1 \otimes y) +_F \psi_1(z \otimes 1) = y +_F z.$$

Hence $z = [-1]_F(y)$ and $\alpha = 1 \otimes y -_F y \otimes 1$. For $\sigma \in G$ we get

$$t_{\sigma} = \psi_{\sigma}(\alpha) = \psi_{\sigma}(1 \otimes y) -_{\mathsf{F}} \psi_{\sigma}(y \otimes 1) = \sigma(y) -_{\mathsf{F}} y.$$

 \mathcal{O}_L free over $\mathfrak{A}(\mathcal{O}_L) \Rightarrow L/K$ Kummer ...

Set $\omega = N_{L/K}(y)$. Then

$$\omega = \prod_{\sigma \in G} (y +_F t_{\sigma}) \in K.$$

Using the fact that $\xi(a)$ is a uniformizer for L we find that ω is a uniformizer for L. Hence L = K(y) and y is a root of

$$P_T(X) = \prod_{\sigma \in G} (X +_F t_{\sigma}) = \omega.$$

A Byproduct

Theorem

Let L/K be a totally ramified Galois extension such that the different \mathfrak{D} of L/K satisfies $\mathfrak{D} = \delta \mathcal{O}_L$ for some $\delta \in \mathcal{O}_K$. Assume that there exists $\xi \in \mathfrak{A}(\mathcal{O}_L)$ and $a \in L$ with $v_L(a) = q - 1$ such that $v_L(\xi(a)) = 1$. Let $\alpha \in L \otimes_K L$ satisfy $\phi(\alpha) = \delta \xi$. Then the set

$$\{\delta^{-1}\phi(1),\delta^{-1}\phi(\alpha),\delta^{-1}\phi(\alpha^2),\ldots,\delta^{-1}\phi(\alpha^{q-1})\}$$

is a basis for $\mathfrak{A}(\mathcal{O}_L)$ over \mathcal{O}_K .

Semistable Extensions and Indices of Inseparability

The definition of the diagram $D(\beta)$ of $\beta \in L \otimes_{\kappa} L$ is reminiscent of the definition of the indices of inseparability of L/K:

- Both are based on expressing elements of L as power series in π_L with coefficients in the set T of Teichmüller representatives of K.
- In both cases it is true, but not obvious, that the data obtained from the power series expansion does not depend on the choice of uniformizer π_L .
- Solution There is a tantalizing parallel between:
 - The indices of inseparability of L/K, which determine the usual ramification data.
 - $D(\beta)$, which determines $N(\beta)$.

Semistable Extensions and Galois Scaffolds

It is natural to ask what the relation is between semistable extensions and Galois scaffolds.

Indeed, both are extra structures on the Galois extension L/K which, when they exist, allow one to compute various properties of the Galois module structure of L.

We saw that every *p*-extension L/K which is not almost maximally ramified and which has a Galois scaffold is semistable.

Regarding the indices of inseparability:

• Can the indices of inseparability of L/K be computed from $G(\beta)$ for an appropriate choice of β ?

Regarding Galois scaffolds:

- Does every semistable extension L/K admit a Galois scaffold? (Nigel Byott thinks the answer is No.)
- ② If the answer is Yes, suppose L/K is semistable with respect to $\beta \in L \otimes_{K} L$. Can we use β to construct a scaffold for L/K?

Thank You!

