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Formal Group Laws
Let K be a local field with perfect residue field K . Let OK be the
ring of integers of K .

Definition
A formal group law over OK is a series F (X ,Y ) ∈ OK [[X ,Y ]] such
that

F (X ,Y ) = X + Y + higher degree terms
F (X ,Y ) = F (Y ,X )
F (X , 0) = X

F (F (X ,Y ),Z ) = F (X ,F (Y ,Z )).

It follows that there is a unique series [−1]F (X ) ∈ OK [[X ]] such that

F (X , [−1]F (X )) = F ([−1]F (X ),X ) = 0.



Examples of Formal Group Laws
The additive formal group law:

Ga(X ,Y ) = X + Y

[−1]Ga(X ) = −X

The multiplicative formal group law:

Gm(X ,Y ) = X + Y + XY
= (1 + X )(1 + Y )− 1

[−1]Gm(X ) = (1 + X )−1 − 1
= −X + X 2 − X 3 + · · ·

Formal group laws also arise naturally from elliptic curves, and in
local class field theory (Lubin-Tate formal groups).



A Family of Examples of Formal Group Laws

Let c ∈ OK , and define

Fc(X ,Y ) = X + Y + cXY .

The first three conditions for a formal group law are clearly satisfied
by Fc . In addition, we have

Fc(Fc(X ,Y ),Z ) = (X + Y + cXY ) + Z + c(X + Y + cXY )Z
= X + Y + Z + c(X + Y + Z ) + c2XYZ
= X + (Y + Z + cYZ ) + cX (Y + Z + cYZ )
= Fc(X ,Fc(Y ,Z )).

In fact if c 6= 0 then Fc(X ,Y ) = c−1Gm(cX , cY ).
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The Height of a Formal Group Law
We define [n]F (X ) recursively for n ≥ 1 by [1]F (X ) = X and
[n + 1]F (X ) = F (X , [n]F (X )).

Let F (X ,Y ) denote the image of F (X ,Y ) in K [[X ,Y ]]. Then
F (X ,Y ) is a formal group law over K .

It is known that if [p]F (X ) ∈ OK [[X ]] is nonzero then it has the form
[p]F (X ) = η(X ph) for some h ≥ 1 and some

η(X ) = c1X + c2X 2 + · · · ∈ K [[X ]]

such that c1 6= 0.

Definition
If [p]F (X ) = η(X ph) with η′(0) 6= 0 we say that F (X ,Y ) has height
h. If [p]F (X ) = 0 we say F (X ,Y ) has infinite height.



Examples of Heights

Since [p]Ga
(X ) = pX = 0, Ga has infinite height.

Since [p]Gm
(X ) = (1 + X )p − 1 = X p, Gm has height 1.

If c ∈MK then F c(X ,Y ) = Ga(X ,Y ), so Fc(X ,Y ) has infinite
height.

If c ∈ O×K then Fc(X ,Y ) has height 1.

Formal group laws associated to elliptic curves have height 1 or 2.

A Lubin-Tate formal group law associated to K has height vK (p).



The Depth of a Formal Group Law
Definition
Let F (X ,Y ) be a formal group law over OK and write

F (X ,Y ) = X + Y +
∑
i ,j≥1

aijX iY j .

The depth of F (X ,Y ) is

d(F ) = inf
{

vK (aij)
i + j − 1 : i , j ≥ 1

}
.

We clearly have d(F ) ≥ 0. Furthermore, if F (X ,Y ) has finite height
then d(F ) = 0.

Let F (X ,Y ) be a formal group law over OK and let c ∈ OK r {0}.
Then F̃ (X ,Y ) := c−1F (cX , cY ) is a formal group law over OK , and
d(F̃ ) = d(F ) + vK (c).



Groups from Formal Group Laws

Let r be an integer such that r > −d(F ). For α, β ∈Mr
K set

α +F β = F (α, β).

Since d(F ) + r > 0, the series F (α, β) converges in K .

Mr
K with the operation +F is an abelian group. The identity element

is 0, and the inverse of α ∈Mr
K is [−1]F (α).

We denote the group (Mr
K ,+F ) by F (Mr

K ).

We can define subtraction in the abelian group F (Mr
K ) by

α−F β = F (α, [−1]F (β)).



Kummer Extensions from Formal Group Laws
Let F (X ,Y ) be a formal group law over OK . Set r = 1 if d(F ) = 0
and r = 0 if d(F ) > 0. Let T be a finite subgroup of F (Mr

K ), and
set

PT (X ) =
∏
t∈T

(X −F t) ∈ OK [[X ]].

Let q = |T |; then q is a power of p.

Proposition
Let a ∈ K with vK (a) = m and p - m. Assume that m/q > −d(F )
and m/q < vK (t) for all t ∈ T . Then there is y ∈ K sep such that
PT (y) = a. If we choose y to have maximum valuation then K (y)/K
is a totally ramified Galois extension with Gal(K (y)/K ) ∼= T .

We say that K (y) is a Kummer extension of K with respect to the
formal group law F (X ,Y ).



Kummer Extensions from Formal Group Laws . . .

We sketch the proof of the proposition under the assumption
vK (a) > 0.

The Weierstrass degree of PT (X )− a is q. By the Weierstrass
preparation theorem we get PT (X )− a = u(X )f (X ) with
u(X ) ∈ OK [[X ]]× and f (X ) ∈ OK [X ] a distinguished polynomial of
degree q.

For t ∈ T we have PT (X +F t) = PT (X ), and hence PT (y +F t) = a.

It follows that the set of roots of f (X ) is {y +F t : t ∈ T}. Thus
K (y) is the splitting field of f (X ) over K , so K (y)/K is Galois.



Kummer Extensions from Formal Group Laws . . .

Since m/q < vK (t) we get

vK(y)(y +F t) = vK(y)(y) = m/q.

Hence f (X ) is irreducible over K .

It follows that there is an isomorphism θ : Gal(K (y)/K )→ T defined
by

θ(σ) = σ(y)−F y .

For σ ∈ Gal(L/K ) set tσ = θ(σ).



Diagonals and Semistable Extensions

Let L/K be a totally ramified Galois extension. Recall that for
β ∈ L⊗K L with β 6= 0 we defined

d(β) = min{i + j : [i , j ] ∈ D(β)}.

We also defined the diagonal of β to be

N(β) = {[i , j ] ∈ D(β) : i + j = d(β)}.

Finally, we defined L/K to be semistable if there exists β ∈ L⊗K L
such that φ(β) ∈ K [G ], p - d(β), and |N(β)| = 2.



Semistable Extensions and Formal Group Laws

Theorem
Let L/K be a totally ramified Galois extension. The following are
equivalent:

1 L/K is a Kummer extension with respect to some formal group
law over OK .

2 L/K is a semistable abelian p-extension.

We’ll outline the proof of 1⇒ 2. We already saw that L/K is an
abelian p-extension.



Kummer Extensions are Semistable
We have a ∈ K , T ≤ F (Mr

K ),

PT (X ) =
∏
t∈T

(X −F t),

and y ∈ OL such that PT (y) = a and L = K (y). Write

X −F Y = F (X , [−1]F (Y )) = X − Y +
∑
i ,j≥1

bijX iY j

and set β = (1⊗ y)−F (y ⊗ 1). Then β ∈ L⊗K L and

β = 1⊗ y − y ⊗ 1 +
∑
i ,j≥1

bijy j ⊗ y i

= 1⊗ y − y ⊗ 1 + terms with higher valuations.

Set m = vL(y). Then d(β) = m and N(β) = {[0,m], [m, 0]}.



Kummer Extensions are Semistable . . .

Let σ ∈ G = Gal(L/K ). Recall that the map ψσ : L⊗K L→ L defined
by ψσ(a ⊗ b) = aσ(b) is a K -algebra homomorphism. Therefore

ψσ(β) = ψσ(1⊗ y −F y ⊗ 1)
= ψσ(1⊗ y)−F ψσ(y ⊗ 1)
= σ(y)−F y
= tσ ∈ K .

It follows that φ(β) =
∑
σ∈G

ψσ(β)σ ∈ K [G ].

Since we also have |N(β)| = 2 and p - m = d(β) we conclude that
L/K is semistable.



When is OK Free over A(OK )?

Theorem
Let L/K be a totally ramified abelian extension of degree q = pr .
Assume that the different D of L/K satisfies D = δOL for some
δ ∈ OK such that δ 6∈ qOK . Then the following are equivalent:

1 There is a formal group law F (X ,Y ) over OK , a finite subgroup
T of F (MK ), and a uniformizer πK of K such that L = K (y)
for some y such that PT (y) = πK .

2 OL is a free A(OL)-module of rank 1.
Furthermore, when these conditions are satisfied, A(OK ) is a Hopf
order in K [G ].

We will sketch the proof of 2⇒ 1.



OL free over A(OL) ⇒ L/K Kummer
The assumptions on D and δ imply that there is ξ ∈ A(OL) such
that for all a ∈ L with vL(a) = q − 1 we have vL(ξ(a)) = 1.

Let α ∈ L⊗K L satisfy φ(α) = δξ and write

φ(α) =
∑
σ∈G

tσσ.

Then tσ ∈MK for all σ ∈ G . By adding a multiple of 1⊗ 1 to α we
can assume that t1 = 0.

We want to construct a formal group law F (X ,Y ) such that
T = {tσ : σ ∈ G} is a subgroup of F (MK ).

We need F (tσ, tτ ) = tστ for all σ, τ ∈ G . Bondarko shows that it is
enough to check this for q particular pairs (σ, τ) ∈ G .

By specializing parameters in a universal formal group law we can
construct F (X ,Y ) to make these q relations hold.



OL free over A(OL) ⇒ L/K Kummer . . .

Since
ξ ∈ A(OL) = φ(D−1 ⊗OK OL)

we have
α = δφ−1(ξ) ∈ OL ⊗OK OL.

In fact there are y , z ∈ML such that α = 1⊗ y +F z ⊗ 1. We get

0 = ψ1(α) = ψ1(1⊗ y) +F ψ1(z ⊗ 1) = y +F z .

Hence z = [−1]F (y) and α = 1⊗ y −F y ⊗ 1. For σ ∈ G we get

tσ = ψσ(α) = ψσ(1⊗ y)−F ψσ(y ⊗ 1) = σ(y)−F y .



OL free over A(OL) ⇒ L/K Kummer . . .

Set ω = NL/K (y). Then

ω =
∏
σ∈G

(y +F tσ) ∈ K .

Using the fact that ξ(a) is a uniformizer for L we find that ω is a
uniformizer for L. Hence L = K (y) and y is a root of

PT (X ) =
∏
σ∈G

(X +F tσ) = ω.



A Byproduct

Theorem
Let L/K be a totally ramified Galois extension such that the different
D of L/K satisfies D = δOL for some δ ∈ OK . Assume that there
exists ξ ∈ A(OL) and a ∈ L with vL(a) = q − 1 such that
vL(ξ(a)) = 1. Let α ∈ L⊗K L satisfy φ(α) = δξ. Then the set

{δ−1φ(1), δ−1φ(α), δ−1φ(α2), . . . , δ−1φ(αq−1)}

is a basis for A(OL) over OK .



Semistable Extensions and Indices of Inseparability

The definition of the diagram D(β) of β ∈ L⊗K L is reminiscent of
the definition of the indices of inseparability of L/K :

1 Both are based on expressing elements of L as power series in πL
with coefficients in the set T of Teichmüller representatives of
K .

2 In both cases it is true, but not obvious, that the data obtained
from the power series expansion does not depend on the choice
of uniformizer πL.

3 There is a tantalizing parallel between:
I The indices of inseparability of L/K , which determine the usual

ramification data.
I D(β), which determines N(β).



Semistable Extensions and Galois Scaffolds

It is natural to ask what the relation is between semistable extensions
and Galois scaffolds.

Indeed, both are extra structures on the Galois extension L/K which,
when they exist, allow one to compute various properties of the
Galois module structure of L.

We saw that every p-extension L/K which is not almost maximally
ramified and which has a Galois scaffold is semistable.



Some Questions

Regarding the indices of inseparability:
1 Can the indices of inseparability of L/K be computed from G(β)

for an appropriate choice of β?

Regarding Galois scaffolds:
1 Does every semistable extension L/K admit a Galois scaffold?

(Nigel Byott thinks the answer is No.)
2 If the answer is Yes, suppose L/K is semistable with respect to
β ∈ L⊗K L. Can we use β to construct a scaffold for L/K ?



Thank You!


